Extensions 1→N→G→Q→1 with N=C14 and Q=C22

Direct product G=N×Q with N=C14 and Q=C22
dρLabelID
C22×C1456C2^2xC1456,13

Semidirect products G=N:Q with N=C14 and Q=C22
extensionφ:Q→Aut NdρLabelID
C14⋊C22 = C22×D7φ: C22/C2C2 ⊆ Aut C1428C14:C2^256,12

Non-split extensions G=N.Q with N=C14 and Q=C22
extensionφ:Q→Aut NdρLabelID
C14.1C22 = Dic14φ: C22/C2C2 ⊆ Aut C14562-C14.1C2^256,3
C14.2C22 = C4×D7φ: C22/C2C2 ⊆ Aut C14282C14.2C2^256,4
C14.3C22 = D28φ: C22/C2C2 ⊆ Aut C14282+C14.3C2^256,5
C14.4C22 = C2×Dic7φ: C22/C2C2 ⊆ Aut C1456C14.4C2^256,6
C14.5C22 = C7⋊D4φ: C22/C2C2 ⊆ Aut C14282C14.5C2^256,7
C14.6C22 = C7×D4central extension (φ=1)282C14.6C2^256,9
C14.7C22 = C7×Q8central extension (φ=1)562C14.7C2^256,10

׿
×
𝔽